Product information query
Products News
首页 > Products > Power Management > DC/DC Step-Down Converter > Buck Step-Down Converter >CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in not
CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in not

The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.
The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.
The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.

CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in not
Manual
  • "

Ordering

Ordering

Product introduction

目录MVM嘉泰姆

1.产品概述                       2.产品特点MVM嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 MVM嘉泰姆
5.产品封装图                     6.电路原理图                   MVM嘉泰姆
7.功能概述                        8.相关产品MVM嘉泰姆

一,产品概述(General Description)    MVM嘉泰姆


  The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.MVM嘉泰姆
  The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-MVM嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.MVM嘉泰姆
  The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-MVM嘉泰姆
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.MVM嘉泰姆
  The CXSD62102A is available in 16pin TQFN3x3-16 package respectively.MVM嘉泰姆
二.产品特点(Features)MVM嘉泰姆


Adjustable Output Voltage from +0.6V to +3.3VMVM嘉泰姆
- 0.6V Reference VoltageMVM嘉泰姆
- ±0.6% Accuracy Over-TemperatureMVM嘉泰姆
Operates from An Input Battery Voltage Range ofMVM嘉泰姆
+1.8V to +28VMVM嘉泰姆
REFIN Function for Over-clocking Purpose fromMVM嘉泰姆
0.5V~2.5V rangeMVM嘉泰姆
Power-On-Reset Monitoring on VCC pinMVM嘉泰姆
Excellent line and load transient responsesMVM嘉泰姆
PFM mode for increased light load efficiencyMVM嘉泰姆
Programmable PWM Frequency from 100kHz to 500kHzMVM嘉泰姆
Built in 30A Output current driving capabilityMVM嘉泰姆
Integrate MOSFET DriversMVM嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETMVM嘉泰姆
Power Good MonitoringMVM嘉泰姆
70% Under-Voltage ProtectionMVM嘉泰姆
125% Over-Voltage ProtectionMVM嘉泰姆
TQFN3x3-16 PackageMVM嘉泰姆
Lead Free and Green Devices Available (RoHS Compliant)MVM嘉泰姆
三,应用范围 (Applications)MVM嘉泰姆


NotebookMVM嘉泰姆
Table PCMVM嘉泰姆
Hand-Held PortableMVM嘉泰姆
AIO PCMVM嘉泰姆

四.下载产品资料PDF文档 MVM嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持MVM嘉泰姆

 QQ截图20160419174301.jpgMVM嘉泰姆

五,产品封装图 (Package)MVM嘉泰姆


MVM嘉泰姆

六.电路原理图MVM嘉泰姆


blob.pngMVM嘉泰姆

七,功能概述MVM嘉泰姆


Input Capacitor Selection (Cont.)MVM嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,MVM嘉泰姆
where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.MVM嘉泰姆
For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-MVM嘉泰姆
tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout.MVM嘉泰姆
MOSFET SelectionMVM嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs shouldMVM嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:MVM嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driverMVM嘉泰姆
will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET, theMVM嘉泰姆
load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-MVM嘉泰姆
tor through the low-side MOSFET driver sinking current path. This results in much less switching loss of the low-MVM嘉泰姆
side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFETMVM嘉泰姆
will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-MVM嘉泰姆
verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. TheMVM嘉泰姆
high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-MVM嘉泰姆
pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to theMVM嘉泰姆
MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.MVM嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-MVM嘉泰姆
tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:MVM嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximatelyMVM嘉泰姆
given by the following equations:MVM嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWMVM嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)MVM嘉泰姆
Where TC is the temperature dependency of RDS(ON)FSW is the switching frequencyMVM嘉泰姆
tSW is the switching interval D is the duty cycle Note that both MOSFETs have conduction losses whileMVM嘉泰姆
the high-side MOSFET includes an additional transition loss. The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFET. MVM嘉泰姆
Layout ConsiderationMVM嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.MVM嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike acrossMVM嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transitionMVM嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,MVM嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasiticMVM嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short andMVM嘉泰姆
wide printed circuit traces should minimize interconnect- ing impedances and the magnitude of voltage spike.MVM嘉泰姆
Besides, signal and power grounds are to be kept sepa- rating and finally combined using ground plane construc-MVM嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-MVM嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are notMVM嘉泰姆
recommended. Below is a checklist for your layout:· Keep the switching nodes (UGATE, LGATE, BOOT,MVM嘉泰姆
and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals.MVM嘉泰姆
Therefore, keep traces to these nodes as short asMVM嘉泰姆
side MOSFET. On the other hand, the PGND trace should be a separate trace and independently go toMVM嘉泰姆
the source of the low-side MOSFET. Besides, the cur-rent sense resistor should be close to OCSET pin toMVM嘉泰姆
avoid parasitic capacitor effect and noise coupling.MVM嘉泰姆
· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. (For example,MVM嘉泰姆
place the decoupling ceramic capacitor close to the drain of the high-side MOSFET as close as possible.)MVM嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output bulk capaci-MVM嘉泰姆
tors should be close to the loads. The input capaci-tor’s ground should be close to the grounds of theMVM嘉泰姆
output capacitors and low-side MOSFET.MVM嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, FB pinMVM嘉泰姆
traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).MVM嘉泰姆

Layout Consideration (Cont.)MVM嘉泰姆

possible and there should be no other weak signal traces in parallel with theses traces on any layer.MVM嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak charging andMVM嘉泰姆
discharging current. The traces from the gate drivers to the MOSFETs (UGATE and LGATE) should be shortMVM嘉泰姆
and wide.MVM嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible.MVM嘉泰姆
Minimizing the impedance with wide layout plane be-tween the two pads reduces the voltage bounce ofMVM嘉泰姆
the drain of the MOSFETs (VIN and PHASE nodes) can get better heat sinking.MVM嘉泰姆

· The PGND is the current sensing circuit reference ground and also the power ground of the LGATE low-MVM嘉泰姆

  • CXSD62102ACXSD62102AMVM嘉泰姆

八,相关产品             更多同类产品...... MVM嘉泰姆


Switching Regulator >   Buck ControllerMVM嘉泰姆

Part_No MVM嘉泰姆

Package MVM嘉泰姆

ArchiMVM嘉泰姆

tectuMVM嘉泰姆

PhaseMVM嘉泰姆

No.ofMVM嘉泰姆

PWMMVM嘉泰姆

OutputMVM嘉泰姆

Output MVM嘉泰姆

CurrentMVM嘉泰姆

(A) MVM嘉泰姆

InputMVM嘉泰姆

Voltage (V) MVM嘉泰姆

ReferenceMVM嘉泰姆

VoltageMVM嘉泰姆

(V) MVM嘉泰姆

Bias MVM嘉泰姆

VoltageMVM嘉泰姆

(V) MVM嘉泰姆

QuiescentMVM嘉泰姆

CurrentMVM嘉泰姆

(uA) MVM嘉泰姆

minMVM嘉泰姆

maxMVM嘉泰姆

CXSD6273MVM嘉泰姆

SOP-14MVM嘉泰姆

QSOP-16MVM嘉泰姆

QFN4x4-16MVM嘉泰姆

VM    MVM嘉泰姆

1   MVM嘉泰姆

1     MVM嘉泰姆

30MVM嘉泰姆

2.9    MVM嘉泰姆

13.2MVM嘉泰姆

0.9MVM嘉泰姆

12     MVM嘉泰姆

8000MVM嘉泰姆

CXSD6274MVM嘉泰姆

SOP-8MVM嘉泰姆

VM   MVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

20MVM嘉泰姆

2.9  MVM嘉泰姆

13.2 MVM嘉泰姆

0.8MVM嘉泰姆

12MVM嘉泰姆

5000MVM嘉泰姆

CXSD6274CMVM嘉泰姆

SOP-8MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

20MVM嘉泰姆

2.9MVM嘉泰姆

13.2MVM嘉泰姆

0.8MVM嘉泰姆

12MVM嘉泰姆

5000MVM嘉泰姆

CXSD6275MVM嘉泰姆

QFN4x4-24MVM嘉泰姆

VMMVM嘉泰姆

2MVM嘉泰姆

1MVM嘉泰姆

60MVM嘉泰姆

3.1MVM嘉泰姆

13.2MVM嘉泰姆

0.6MVM嘉泰姆

12MVM嘉泰姆

5000MVM嘉泰姆

CXSD6276MVM嘉泰姆

SOP-8MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

20MVM嘉泰姆

2.2MVM嘉泰姆

13.2MVM嘉泰姆

0.8MVM嘉泰姆

5~12MVM嘉泰姆

2100MVM嘉泰姆

CXSD6276AMVM嘉泰姆

SOP-8MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

20MVM嘉泰姆

2.2MVM嘉泰姆

13.2MVM嘉泰姆

0.8MVM嘉泰姆

5~12MVM嘉泰姆

2100MVM嘉泰姆

CXSD6277/A/BMVM嘉泰姆

SOP8|TSSOP8MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

5MVM嘉泰姆

5MVM嘉泰姆

13.2MVM嘉泰姆

1.25|0.8MVM嘉泰姆

5~12MVM嘉泰姆

3000MVM嘉泰姆

CXSD6278MVM嘉泰姆

SOP-8MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

10MVM嘉泰姆

3.3MVM嘉泰姆

5.5MVM嘉泰姆

0.8MVM嘉泰姆

5MVM嘉泰姆

2100MVM嘉泰姆

CXSD6279BMVM嘉泰姆

SOP-14MVM嘉泰姆

VM   MVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

10MVM嘉泰姆

5MVM嘉泰姆

13.2MVM嘉泰姆

0.8MVM嘉泰姆

12MVM嘉泰姆

2000MVM嘉泰姆

CXSD6280MVM嘉泰姆

TSSOP-24MVM嘉泰姆

|QFN5x5-32MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

2MVM嘉泰姆

20MVM嘉泰姆

5MVM嘉泰姆

13.2MVM嘉泰姆

0.6MVM嘉泰姆

5~12MVM嘉泰姆

4000MVM嘉泰姆

CXSD6281NMVM嘉泰姆

SOP14MVM嘉泰姆

QSOP16MVM嘉泰姆

QFN-16MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

30MVM嘉泰姆

2.9MVM嘉泰姆

13.2MVM嘉泰姆

0.9MVM嘉泰姆

12MVM嘉泰姆

4000MVM嘉泰姆

CXSD6282MVM嘉泰姆

SOP-14MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

30MVM嘉泰姆

2.2MVM嘉泰姆

13.2MVM嘉泰姆

0.6MVM嘉泰姆

12MVM嘉泰姆

5000MVM嘉泰姆

CXSD6282AMVM嘉泰姆

SOP-14MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

30MVM嘉泰姆

2.2MVM嘉泰姆

13.2MVM嘉泰姆

0.6MVM嘉泰姆

12MVM嘉泰姆

5000MVM嘉泰姆

CXSD6283MVM嘉泰姆

SOP-14MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

1MVM嘉泰姆

25MVM嘉泰姆

2.2MVM嘉泰姆

13.2MVM嘉泰姆

0.8MVM嘉泰姆

12MVM嘉泰姆

5000MVM嘉泰姆

CXSD6284/AMVM嘉泰姆

LQFP7x7 48MVM嘉泰姆

TQFN7x7-48MVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

6MVM嘉泰姆

0.015MVM嘉泰姆

1.4MVM嘉泰姆

6.5MVM嘉泰姆

-MVM嘉泰姆

5MVM嘉泰姆

1800MVM嘉泰姆

CXSD6285MVM嘉泰姆

TSSOP-24PMVM嘉泰姆

VMMVM嘉泰姆

1MVM嘉泰姆

2MVM嘉泰姆

20MVM嘉泰姆

2.97MVM嘉泰姆

5.5MVM嘉泰姆

0.8MVM嘉泰姆

5~12MVM嘉泰姆

5000MVM嘉泰姆

 MVM嘉泰姆